Chapter 11. Phase 5: Covering Tracks and Hiding

Every day, attackers take over Web sites by the dozens and tamper with
their contents. A large number of such victims are archived at the Zone-H
Web site (), which contains a virtual museum of Web vandalism attacks over
the last several years. Some attackers want to create a big splash with a
high-profile attack to establish a reputation, embarrass their victims, or to
make a political point. Massive Distributed DoS (DDoS) attacks or vandalism
of a major Web site can surely garner attention.

However, attackers who desire quiet, unimpeded access to computing
systems and sensitive data conduct the vast majority of attacks. This class of
attackers wants to stay hidden, so they can maintain covert control of
systems for lengthy periods of time, stealing data, consuming CPU cycles,
launching other attacks, or just keeping their valued access for use at a later
time. In my experience, these silent system compromises far outnumber the
instances of publicly observed attacks. With the large number of well-
documented, high-profile Web tampering cases, consider that there are
probably far more computer systems on the Internet that have been taken
over by an attacker who silently hides in the background. Many companies,
government agencies, universities, and other organizations are unwittingly
providing a home on their computing systems for these silent attackers. In
the course of investigating incidents, we routinely find networks of
thousands or even tens of thousands of bots hidden from the owners of the
host computers.

How are these attackers, who gain access on a system, hiding their tracks to
avoid detection? In many cases, they don't have to hide. Over the past
several years, the largest proportion of compromises have taken place on
poorly maintained home computers connected to the Internet with
broadband connections. These machines represent attractive targets for an
attacker because they are often operated by individuals with little or no
computer security expertise. However, public awareness of computer crime
aimed at these "always on" home broadband machines is increasing. More
and more home computer users are installing software designed to increase
security without requiring any specialized computer security knowledge,
such as antivirus, antispyware, and personal firewall tools. Although they
certainly won't replace a knowledgeable system administrator, these "point-
and-click" software security products have succeeded, to a greater or lesser
degree, in somewhat increasing the security of the home computer market.
The wild west isn't completely tamed, but the trajectory is improving.

Whereas a broadband-connected home computer might be a good target for
an attacker intent on building a bot-net, the target of choice for the elite
attacker is still a business network. Business networks, although providing

attractive targets, are also more closely monitored, requiring would-be
attackers to hone their skills at covering their tracks. One of the main
techniques for hiding on a system is utilizing a rootkit or backdoor program,
as described in detail in Chapter 10, Phase 4: Maintaining Access. Beyond
installing rootkits and backdoors to mask the changes made to the system,
many attackers go further in covering their tracks, by modifying logs,
creating hidden files, and establishing covert channels. This chapter
describes these techniques for hiding on a system.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses

By Ed Skoudis, Tom Liston

Counter HWK

Benoaner LR

Publisher: Prentice Hall A A A
Pub Date: December 23, 2005

Print ISBN-10: 0-13-148104-5

Print ISBN-13: 978-0-13-148104-6

Pages: 784

Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Hiding Evidence by Altering Event Logs

To avoid detection by system, network, and security administrators, many
attackers alter the logs of their victim machines. Even though (as we
discussed in the last chapter) the techniques used by rootkits are incredibly
powerful and allow an attacker to mask practically all of their activities on
the compromised machine, there will often be traces of the installation of
the rootkit in the system's logs. Even an attacker who uses the most
powerful and stealthy rootkit will need to remove particular events from the
logs associated with gaining access, elevating privileges, and installing their
backdoors or rootkits in the first place. Events such as failed login records,
error conditions, stopped and restarted services, and file access and update
times must be purged from the logs or altered to avoid having these
activities spotted by an alert administrator.

Of course, on most systems, an attacker with sufficient access privileges
(usually root or administrator) can completely purge or delete the log files.
However, completely deleting the logs, blowing away all normal log data
along with the insidious events, is very likely to be noticed. As the saying
goes, even a blind squirrel finds an acorn once in a while. So it is with

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

system administrators: Even the worst one would probably notice a large
chunk of time missing from the system logs. Attackers want to edit the
system logs on a line-by-line basis to keep normal events in the logs, while
removing the suspicious events generated by their activities. Obviously, the
techniques used to modify system logs are very dependent on the system
type. The techniques that an attacker will use on a Linux- or UNIX-based
system will be dramatically different from those required for a Windows-
based system, simply because the logging mechanisms themselves are quite
different. We analyze attacks against logging in both Windows and
Linux/UNIX. In Chapter 3, Linux and UNIX Overview, we briefly examined
Linux and UNIX logging mechanisms, but before looking at how attackers
manipulate and undermine logging on Windows systems, we'll first need to
learn a little about how logging works under Windows.

Attacking Event Logs in Windows
Event Logging in Windows

On modern Windows systems (that is, NT, 2000, XP, 2003, and later), the
event logging service, known as EventlLog, produces a set of files (with the
suffix . LOG) where it temporarily places information about logged system

and application events, such as a user logon, access control violation, service
failure, and so on. This event information is constantly being written into
files, which are named SECURITY.LOG, SYSTEM. LOG, and

APPLICATION.LOG. The event information, however, doesn't stay in these
. LOG files. Each of the .LOG files is periodically and automatically rewritten

by Windows, which moves the event information into the system's main
event logs: the SECEVENT .EVT, SYSEVENT.EVT, and APPEVENT .EVT

files. It is actually these files that are the main event logs in Windows, and it
is the .EVT files that are read by an administrator using the built-in

Windows Event Viewer tool or a third-party log analysis tool. The Event
Viewer tool, showing events from the SECEVENT .EVT file, is shown in

Figure 11.1.

Figure 11.1. The Windows XP Event Viewer.

[View full size image]

[<o

4 Evert: viewer [Local) Seourky 377 event(s)
[5) Anchestion [Type_+ [oats [Tme [Sowrce | cmegory | Bvent | Uher []
Hm @f Success dudt 1312005 114695 AN Ssowity Logonflogoff 528 LOCALSERMICE ||

J'_»J::oe-ss Audt 12005 104628 AW Ssowity LogondLogoff 40 ARONROUS LOGON

,_('Eu:oe-ss Audt 1f31[2005 10:46:23 AWM Security Pokcy Change =143 HET'WORE SERMICE

of success Budt 1302005 11MEZEAM Secuy Logonflogolf S2B LOCAL SERVICE

,f"%u(r"-:i Audt 1302005 10:46:22 AM Seourity Sysbism Event SIS SYSTEM

f Success Sudt 1312005 10:46:Z2 AM Secuily SystemEvent SIS SYSTEM

gf Sutcess fudt 13112005 10:46:20 AM Secwily SystemEvent SIS SHATEM

o Sucosss Audt 1PSIJ2005 10:46:21 AM Secwity Logonflogolf 528 LOCAL SERVICE

JSJ.-me-ss Audt 132005 10:46:20 AW Ssowity LogonfLogolf b Haraler

JSJ.-:DE-SS Audt 132005 10:46:30AM Sscunity Account Logon S0 SYSTEM

,_(‘Eu:oe-ss Audt 1f31[2005 1046:20 AWM Seourty LogonfLogoff 53 Harder

,_('Su:c\e-ss Audt 1f302005 104620 AM Seouty LogonfLogoff =] Harcler

Gf Sucoess Sudt 132005 104620 AM Secuity AccountLogon 650 SYSTEM

of Surcess Sudt 1[31[2005 104620 AM Seouity Logonflogelf S35 HETWORE SERVICE

,fﬁml.ﬂs Audt 1312005 104620 AW Saswily SyitemEvent SIS SYSTEM

of Success fudt 1[3LI2005 11:46:20AM Sscwity Pobcy Change 612 SYATEM

Jb'ume-ss Audt 12005 104620 4M Ssowity System Event SIS SYSTEM

JS-I:CDE-SS Audt 132005 10:96:30AM Ssourty System Event k=113 SYSTEM

,_('51.1:01:-:: Audt 1302005 10:46:30AM Security Syshem Event =113 SYSTEM

,_(l'su:u-ss Audt 1f30/2005 10:46:20AM Sequrlty Syshem Event S SYSTEM _l;l
L3

A

The SECEVENT .EVT file stores security-related events, including failed

logon attempts, policy changes, and attempts to access files without proper
permission (if the system is configured to log such event types). The
SYSEVENT .EVT file stores events associated with the system's functioning,
and it is here that you'll find messages with details on the failure of a driver
or the inability of a service to start. The APPEVENT.EVT file stores events

associated with applications, such as databases, Web servers, or user
applications. All of these files, which are written with a specific binary
format, are what attackers want to target to cover their tracks. The
SECEVENT.EVT file is most often targeted because it contains the majority

of the events that attackers wants to remove, such as failed logon attempts
and access violations that were triggered by their attempts to gain access to
a system.

Altering Event Logs in Windows

To erase traces of activity, attackers would, at a minimum, want to alter
SECEVENT.EVT. However, to be more confident that all traces of their

activity are gone, the attackers would possibly want to alter the
SYSEVENT.EVT and APPEVENT .EVT files as well. But all three .EVT files

are "locked" on a running Windows machine, and cannot be opened or edited
with a standard file-editing tool.

Completely deleting any .EVT file is no problem for anyone who has the
proper rights (Manage Audit and Security Log) or permissions (such as
Delete for the \windows\system32\config directory that holds these
logs). But remember, a suddenly empty log should be highly suspicious and
should attract the attention of even the most inattentive administrator.

Whereas a novice attacker might try to cover his or her tracks by simply
deleting the .EVT files, a more experienced perpetrator will try to alter the

event logs on a line-by-line basis.

With physical access to the Windows system, an attacker could simply boot
the system from a CD-ROM and edit the log files on the main system
partition using an editor with the capabilities of regenerating the correct
binary format for the log data. The files are only "locked" and unalterable
when the Windows system that generated them is running. As described in
Chapter 7, Phase 3: Gaining Access Using Application and Operating System
Attacks, a Linux boot CD-ROM image for editing the Windows password
database can be found at . This tool allows an attacker to change the
Windows administrator password by booting from a Linux CD-ROM. A boot
disk for changing system logs on a line-by-line basis and regenerating the
appropriate binary format for the .EVT log file could certainly be created

using any of the Windows or Linux boot CDs available on the Internet, but
there is currently no "prepackaged" tool like this in widespread use.
Although not elegant and requiring a great deal of physical access, this
technique could be remarkably effective in covering tracks.

The most effective technique for altering system logs avoids booting the
system from a CD-ROM and doesn't require physical system access. Event
log editing tools are available that allow an attacker with administrator
privileges to purge individual events from the SYSEVENT .EVT,

SECEVENT.EVT, or APPEVENT .EVT file on a running Windows NT/2000

system (if you need to cover your tracks on a Windows XP or 2003 system,
you're currently out of luck as there are no publicly released tools that work
on those platforms ... yet). To accomplish this task for an attacker with
administrative privileges, the tool first stops the Windows Event Logging
service. It then changes the permissions on the .EVT files, and copies the

data to memory for editing. The attacker can make any desired changes to
the version of the event log in memory. The tool automatically calculates the
new binary-formatted information (a crucial step in ensuring that the
resulting event logs are not interpreted as corrupted by the Event Viewer).
To clean up after the changes are made, the tool overwrites the .EVT files,

resets their permissions, and restarts the Windows Event Logging service.
When the administrators access the logs, they will see only the happy,
pleasant image created by the attacker, with all suspicious events purged.

The WinZapper tool by Arne Vidstrom, allows an attacker to remove events
selectively from the security logs of a Windows NT/2000 machine. Available
at the WinZapper tool provides a point-and-click interface for deleting
security events on a one-by-one basis. As shown in Figure 11.2, the attacker
selects the specific events to delete, and clicks Delete Events and Exit. For

the changes that WinZapper makes to the event logs to take effect,
however, the system must be rebooted to restart the EventlLog service.
There are other tools floating around in the computer underground that
aren't really "public" that give an attacker the ability to alter the system logs
without rebooting the machine. These tools typically focus on injecting code
into the running EventLog service itself, giving the attacker the ability to
alter the logs from within by undermining a piece of the operating system
itself, in a fashion rather like the Windows rootkits we discussed in Chapter
10.

Figure 11.2. The WinZapper tool: Marked events will be selectively
deleted from the Windows NT/2000 event logs.

[View full size image]

 WinZapper - http:/ /ntsecurity.nu . x|

Type | DateandTme | Category |Use | Morelnfomal
Sucoess St Mon Jun 27 09:46:08 2005 Detaded Tracking NT AUTHORITYISYSTEM 568 TWINN
Success dudt Mon Jun 27 09:46:08 2005 Priviiege Uss NT AUTHORITYISYSTEM NTLocatSea
Success Mk Mon Jun 27 09:46:08 2005 Debsded Tracking NT AUTHORITYISYSTEM 588 \WINN
Sucoess k. Mon Jun 27 09:46:08 2005 Priviege Use NT AUTHORITYISYSTEM NTLocaltSen
Success dudt Mon Jun 27 0D:46:08 2005 Priviiege Uss NT AUTHORITYISYSTEM NTLocatSec
Success sk Mon Jun 27 09:46:08 2005 Detsded Tracking NT AUTHORITYISYSTEM 640 \Progre
Mon Jun 27 09:46:08 2005 Detaded Tracking NT AUTHORITYISYSTEM 678 IWINN
The attacker Mon Jun 27 09:46:08 2005 Detaded Tracking NT AUTHORITYISYSTEM 688 \WINN
Fach Mon Jun 27 09:46:17 2005 Priviiege Uss NT AUTHORITYISYSTEM NTLocstSec
a5 chosen Mon Jun 27 09:46: 18 2005 Detaded Tracking NT AUTHORITYISYSTEM 756 IWINN
these events to Mon Jun 27 09:47:07 2005 Priviege Uss NT ALTHORITY\SYSTEM NTLocalSea
be deleted. Wl Moo Jun 27 09:47:21 2005 Accourt Management NT AUTHORITYISYSTEM MICROSCE

S8 Mon Jun 27 09:47:21 2005 LogonLogoff NT AUTHORITYISYSTEM eskouds Vir
S Mon Jun 27 09:47:26 2005 Accourt Management NT ALITHORITYASYSTEM MICROSOF
N Mo Jun 27 09:47:26 2005 Logon/Logof NT AUTHORITYISYSTEM eskouds Vi
Sl Mon Jun 27 09:47:29 2005 Accourt Management NT ALITHORITY{SYSTEM MICROSOE
W Mon Jun 27 09:47:29 2005 Logon/Logoff NT AUTHORITYISYSTEM eskouds Vi
PN Mon Jun 27 09:47:32 2005 Account Mansgamert NT AUTHORITYISYSTEM MICROSCF

X0 Mon Jun 27 09:47:32 2005 LogonfLogaf NT ALUTHORITYISYSTEM mme
Mon Jun 27 09:47:36 2005 Accourt Management NT ALITHORITYASYSTEM MICROSOF
O Mo Jun 27 09:47:36 2005 Logon/Logoff NT AUTHORITYISYSTEM eskouds Vi
PERULEE Mon Jun 27 069:47:38 2005 Accourt Managemert NT AUTHORITYISYSTEM MICROSOF
TTLl Mon Jun 27 09:47:38 2005 Logon/Logoff NT AUTHORITYISYSTEM eskouds Vi

Mo Jun 27 09:46:19 2005 Accourt Managemert NT ALTHORITYISYSTEM MICROSOF =

L3

|
G o e

Windapper 1.0 - [c) 2000, Asne Vidstiom, sme. vidshiom@ntcecunty.nu - hilpcntsscunty, nuftoolboe/warzapper’

Attacking System Logs and Accounting Files in Linux and
UNIX

Linux and UNIX System Logs

As described in Chapter 3, on Linux and UNIX systems, the vast majority of
log files are written in standard ASCII text, not a specialized binary format
like the logs of Windows machines. Thus, to edit Linux and UNIX logs, an
attacker requires only root privileges or the privileges of a specific
application that generates the logs, such as a Web server daemon. So, given
this traditional Linux and UNIX log file environment, how do attackers cover
their tracks? Some attackers employ automated scripts that pour through
system logs, automatically deleting various items to cover their tracks. In
the hands of an experienced attacker, these automated log editing scripts
can quickly and efficiently hide any evidence of an attack. On the other
hand, script kiddies often attempt to run such automated scripts on the
wrong flavor of Linux or UNIX, resulting in attempts to edit or delete files

that do not exist on that particular flavor. This then creates a series of
additional log entries, documenting these errors, making the attacker look
pretty ridiculous in the process. Given the myriad differences in logging on
various Linux and UNIX varieties, a standard log editing script will likely fail
unless it is run on nearly the same version of the same Linux or UNIX
variety for which it was designed.

How do more sophisticated attackers, the ones who don't need such scripts,
cover their tracks? The attacker typically begins by looking at the syslogd

configuration file, normally found in /etc/syslog.conf, to determine

where the log files themselves are located. This configuration file tells
syslogd where in the file system to put the logs. Once the log location is

discovered, an attacker with root privileges (which might have been
obtained through exploiting a buffer overflow or other attack) can directly
edit the logs. Because the logs are plain ASCII text, with root privileges,
attackers can alter the log files by using their favorite editor (such as vi,
emacs, gedit, pico, or any other text editing tool). Sophisticated attackers
will systematically go through the log files and remove entries associated
with their gaining access to the system (such as failed login attempts or
specific application error messages). Because the files are text, rather than a
binary format, they can be altered and saved without any indication of file
corruption.

Altering Accounting Entry Files in Linux and UNIX

Beyond the main log files, as described in Chapter 3, the main accounting
files in Linux and UNIX are the utmp, wtmp, and lastlog files. Whereas
the vast majority of Linux and UNIX log files are written in standard ASCII
format, the utmp, wtmp, and lastlog files are written with a special
binary format. The utmp and wtmp files are stored as so-called utmp
structures, and lastlog is stored in a variety of different formats on

different Linux and UNIX machines. If an attacker attempts to edit these files
using a standard text editor, the files will appear corrupted and cannot be
properly read by the system (using who, 1ast, and other commands). Of

course, because the files are written in a binary format, the attacker will
only see gibberish anyway when opening them in a standard editor.

To edit these accounting files, an attacker must use a tool that can read and
rewrite the special binary format that they use. An attacker can choose from
several tools, with a complete inventory available at Particular tools are
often fine-tuned for specific varieties of Linux and UNIX. In particular, the
tool remove, written by Simple Nomad, allows for removing entries from

utmp, wtmp, and lastlog for several UNIX systems. The remove program
also allows an attacker to change the last login time, location, and status of

any users to whatever the attacker desires by editing the UNIX lastlog

file. Other similar tools include wtmped, marry, cloak, logwedit, wzap, and
zapper. Many of these log and accounting editing tools are included as
standard components of the rootkit distributions discussed in Chapter 10.

Altering Linux and UNIX Shell History Files

One additional type of accounting and logging of particular concern to
attackers is individual users' shell history files. The shell history file stores a
list of all commands recently entered by the user into the command line.
Whenever you type something at a Linux or UNIX command prompt, your
shell (if it is configured properly) stores the command that you typed,
maintaining a history of your interactions with the system. Usually, the shell
history contains the previous 500 or so commands, although this is
configurable. The command shell uses this history to allow the user easy
access to previously entered commands, making repetitive command
sequences much easier to enter.

If an attacker takes over a user's account, or creates a brand new account to
attack from, the shell history file will contain a list of all commands entered
by the attacker. Shell history files are typically stored in individual users'
home directories, and have names such as .bash history. For example,

the following list shows the shell history from a user that has been messing
around with the /etc/shadow file, where encrypted user passwords are

stored:

1ls
vl /etc/shadow

These commands were typed into the command line by the attacker and
dutifully stored in the shell history file by the command shell program. We
can see that the attacker first executed the 1s command to get a listing of

the contents of the current directory. Then, the attacker used the text
editor, vi, to view and possibly alter the /etc/shadow file. The attacker

might have changed a password or simply looked through the file for other
account names and password hashes. After snagging a copy of the shadow
file, the attacker might have started cracking the password representations.

Like standard UNIX log files, shell histories are written in plain ASCII, and
can be easily edited using the attacker's favorite text editing tool. Wiley
attackers remove all lines associated with their nefarious activities to throw
off administrators and investigators. Additionally, the attacker can configure
the length of the shell history file to simply be "zero" so that no history will

be maintained for an account used for attacks. Shell history files with a
length of zero could raise suspicions of system administrators, though, so
the more careful attackers simply remember to remove the commands that
could raise suspicion rather than completely deleting the history.
Interestingly enough, attackers can even lines to another user's shell history
file, possibly framing that user or diverting suspicion.

However, by simply opening the shell history file to edit it, the bad guy faces
a problem. It's important to remember that shell history is written when the
shell is exited. Therefore, you won't see your most recent commands in the
shell history; they are stored in memory until the shell is exited gracefully.
At that time, they are written to the shell history file. This has significant
impact for attackers editing shell history. In particular, the attacker's
command used to invoke the editor will be placed in the shell history file, so
an investigator might see something like vi .bash history. That's bad

news for the attacker, because the investigator now knows the bad guy
altered the shell history. To deal with this problem, the attacker could exit
the shell, log back in, creating another shell, and then try to edit the shell
history file again to remove the line about editing the shell history. But,
then, when the attacker logs out, the most recent history will be written,
along with the new command about editing the shell history file! It's a
chicken-and-egg problem for the attacker.

With computers, if you ever face a chicken-and-egg problem, you need to
find out how to kill the chicken or break the egg, solutions that lend
themselves well to editing shell history. There are two widely used solutions
to this dilemma for the attacker. First, the bad guy could simply set the shell
history size to zero, as we discussed earlier (I suppose that's breaking the
egg). But a more comprehensive way of dealing with the issue is to kill the
chicken; that is, simply kill the shell instead of gracefully exiting it.
Remember, shell history is written only when the shell gracefully exits. By
killing the running shell process, the attacker deprives it of the ability to
write its history. Therefore, instead of logging out, the attacker can kill the
shell by simply running a command like this:

kill -9 [pid of the shell process]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses

By Ed Skoudis, Tom Liston

Publisher: Prentice Hall A A A
Pub Date: December 23, 2005

Print ISBN-10: 0-13-148104-5

Print ISBN-13: 978-0-13-148104-6

Pages: 784

Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defenses Against Log and Accounting File
Attacks

To mount an effective defense, it is critical to prevent attackers from having
the ability to alter logs. Logs that have been tampered with are less than
useless for investigative purposes, and conducting a forensic investigation
without adequate logging is like trying to drive your car while wearing a
blindfold: difficult if not impossible, and certainly messy. As with hardening
any system, the amount of effort you will want to apply to defending a given
system's log information depends on the sensitivity of the server. Clearly,
for Internet-accessible machines with sensitive data, a great amount of care
must be taken with the logs. For some internal systems, logging might be
less important. However, for critical systems containing information about
human resources, legal issues, and mergers and acquisitions, logs could
make or break your ability to detect an attack and build a case for
prosecution. Let's examine the techniques used to defend logs on Windows
and Linux/UNIX, as well as other platforms.

Activate Logging, Please

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The first step in ensuring the integrity and usefulness of your log files is
quite simple: Activate logging on your sensitive systems! Quite often, I have
been involved with a security investigation only to discover that by default,
logging is deactivated on many of the servers that are included in the
investigation. My heart drops when I come to this realization. Your
organization must have a policy or standard specifying that logging must be
done. Additionally, you should periodically audit your systems to ensure that
logging is activated in accordance with your policy. It is especially important
to check that adequate storage exists to house logging information. Windows
systems are configured out of the box to limit each of the event logs to a
paltry 512K, with the newest events overwriting the oldest events when that
limit is reached. This limit can be changed through the "properties" item for
each of the particular "classes" of events (security, system, or application)
within Event Viewer. When deciding on these limits, it is important to
consider just how quickly you believe your organization can respond to an
event and track it back to a particular machine. Only slightly less frustrating
than finding a compromised machine with logging disabled is finding a
compromised machine where critical events have been overwritten, so give
your logs plenty of disk space—hundreds of megabytes or even gigabytes of
space—depending on the typical volume of logs for a given system.

Setting Proper Permissions

Another commonsense defense for protecting critical system logging and
accounting information is to set proper permissions on the log files, as well
as (for Linux and UNIX systems) utmp, wtmp, lastlog, and users' shell

histories. Although particular permissions vary depending on the operating
system, you should configure your system to allow for the minimum possible
read and write access of log files. In particular, security and kernel logs
should be set to be read and written only by root, if your Linux and UNIX
flavor allows such tight permissions. Some variants of UNIX require that
particular log files be writable by particular accounts other than root. If this
is the case for your flavor of UNIX, make sure you configure the minimal
permissions necessary for logging to function properly.

Using a Separate Logging Server

One of the most effective techniques for minimizing an attacker's capability
to alter logs involves setting up a separate logging server. Your critical
systems, such as your Internet-accessible DNS server, mail server, Web
servers, and so on, should be configured to redirect their logs to a separate
machine on your DMZ. Your critical internal systems should send their logs
to a group of separate logging systems on the internal network. Not only
does this technique help to centralize logs for better analysis, it also
significantly limits an attacker's ability to monkey with the logs. If attackers

take over root on a Linux or UNIX system or an administrator account on a
Windows box, they will not be able to alter the logs to cover their tracks,
because the logs are elsewhere. The attacker will only be able to modify the
logs by mounting a successful attack against the logging server. Therefore,
by using the separate logging machine, we've just raised the bar. Of course,
you must strongly secure the logging server. Make sure you apply system
security patches, and close all unused ports on the logging server machine.
Additionally, strongly resist the urge to use your logging server for any
other purpose beyond aggregating logs. The more services you place on the
logging box, the more vulnerable it becomes to attack.

Although you won't be able to capture shell histories, utmp, wtmp, and
lastlog from Linux and UNIX systems on a separate server, you can still

redirect all of the pure logs to a separate server. To configure a Linux or
UNIX system to use a separate logging server, you must configure syslogd

so it knows where to direct the logs. First, make sure there is a line in your
/etc/services file associating syslog with its standard port, UDP port
514:

syslog 514 /udp

Next, include an entry in the syslog.conf file that tells syslog to

redirect particular message types to a remote server. For kernel-type
messages, the following line should be placed in syslog.conf:

kern.* @[hostname for remote logging]

Note that this type of configuration can be done in addition to local logging,
rather than replacing local logging. That way, you'll get two sets of the same
logs, which can act as corroborating evidence in an investigation. One set of
logs comes from the local system, and another set comes from the log
servers. Such a setup will also help you look for discrepancies when an
attacker starts to change the local logs of a victim machine.

Just to be sure that an attacker cannot disable logging by attacking DNS, the
logging server hostname listed above should be included in /etc/hosts so

that it resolves locally. This local resolution of the log server name shouldn't
present a major management headache, because your centralized log server
will not be changing its IP address very often.

For particularly sensitive servers, I've also sent syslog information over a

serial connection to a local logging box with no network connectivity at all.
The purpose of this log was to simply act as a local backup of information
logged remotely, but it also provides a log that is virtually unalterable to
anyone who does not have physical access to your location.

In Windows, the EventLog service can be replaced by a Windows-compatible
version of syslog, with capabilities for centralizing log access. Several syslog-
for-Windows tools are available, including the commercial tool SL4NT at and
Kiwi syslog for Windows at . By using these tools, event logs can be sent to
separate syslog servers from a Windows system.

Encrypting Your Log Files

Another very useful technique for log protection is to encrypt the log files.
When attackers try to edit the files, they will not be able to alter them
meaningfully without the decryption key. The attacker's only option will be
to delete the log file, which is a very noticeable action. To encrypt log
information as it passes across the network and is placed in the log files
stored locally on the logging server, you could use Core Labs' free Secure
Syslog tool available at . Of course, syslogging to a separate logging server
can be combined with this log encryption technique to even further protect
the system logs.

Making Log Files Append Only

On Linux and some UNIX systems, you might want to make your log files
append only, particularly if you use a separate syslog server. To do this, use
the change attribute command as follows:

Change the attribute
of the file

$ chattr +a [logname]

Make it Change the
append-only attribute on this file

If attackers try to edit a log file that has been set to be "append only," they
will find it write protected, as it has been changed to allow operations only to
append data to the file. This is, of course, only a speed bump, because any
slightly sophisticated attacker with root privileges will notice this and simply
change the attribute back to make the log file alterations. This is, however,
a simple change that will flummox many of the log-cleaning scripts used by
the rank-and-file script kiddie masses.

Protecting Log Files Using Write-Once Media

A more thorough way of protecting the logs on any type of system
(Windows, Linux, UNIX, or others) is simply to store the logs on unalterable
media, such as a nonrewriteable DVD or CD-ROM. The prices of both DVD
recorders and media have dropped to the point over the past several years
that this is certainly a viable option. The attacker cannot alter the logs
because they are protected by the physical medium itself. Write-once media
(like DVDs and CD-ROMs) unfortunately will always have lower performance
when compared with a speedy hard drive, and might not be capable of
sustaining real-time logging from several different sources simultaneously.
Therefore, you might want to configure your logging server to flush logs
periodically to the write-once media, such as once per day, or when specific
file size thresholds are reached.

When all six of these techniques are applied together (activating logging,
setting minimal permissions, using a separate logging server, encrypting the
log files, setting the logs to append only, and storing them on write-once
media), you can have a far better degree of confidence in the integrity of
your log files. Of course, each of the techniques can be employed separately
depending on your security needs.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses

By Ed Skoudis, Tom Liston

Publisher: Prentice Hall A A A
Pub Date: December 23, 2005

Print ISBN-10: 0-13-148104-5

Print ISBN-13: 978-0-13-148104-6

Pages: 784

Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Creating Difficult-to-Find Files and Directories

Another technique used by attackers to cover their tracks on a system
involves creating files and directories with special names or other attributes
that are easily overlooked by users and system administrators. Attackers
often create "hidden" directories and files to store various attack tools
loaded on the systems, save sniffed passwords, and store other information
belonging to the attacker. Of course, as described in Chapter 10, rootkits can
alter the function of critical system components to hide both files and
directories. We have explained the techniques used by rootkits elsewhere, so
we now turn our discussion toward other, nonrootkit options for hiding data.
Let's explore the many ways to hide files and directories under UNIX and
Windows using only the basic operating system features, without requiring
the installation of a rootkit.

Creating Hidden Files and Directories in UNIX

On UNIX systems, attackers often name their files with a period (.) at the
start of the name to make the files less likely to be noticed by users and
system administrators. Why are such files less likely to be noticed? By

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

default, the standard UNIX 1s command used for viewing the contents of a

directory does not display files with names that begin with a period. This
standard behavior was designed to keep directory listings from getting
cluttered. An application can create a file or directory that is hidden from a
user just by naming it . [filename]. Applications often use files or

directories named in this way to store configuration information specific to
an individual account, and there are usually many files of this type in each
user's home directory. To view all files in a directory (including those files
with names that begin with a period), the 1s command must be used with

the —a flag, which will show of the contents of the directory. Consider an
example in which the attacker wants to hide information in the /var
directory. The attacker can create a file or directory named .mystuff to

hide stolen passwords or attack tools. When such a file is present, let's look
at the difference between the output of the standard 1s command and the

1ls —a command:

[View full size image]
11s

ftp httpd nctest test tools

\ Any file with a name starting with . is

omitted by default

§ 1s -a
. .mystuff ftp httpd nctest test tools

\ Files or directories that start with a . are shown because we used the -a flag,
including the attacker’s . mystuff file. Note that the links to the current directory
{.) and parent directory (..} are included in the output as well.

An even subtler technique for hiding files on UNIX systems involves naming
files or directories with a period followed by one or more spaces. As
described in the Chapter 3 section titled "Linux and UNIX File System
Structure," included inside every Linux and UNIX directory there are two
links to other directories. One of these links is named., which refers to the
directory itself. The other is .., which refers to the parent directory just
above the given directory in the file system hierarchy. These conventions
allow a user to refer to files in the local and parent directories with a
convenient shorthand. An attacker will often name a file or directory period-
space (.) or period-period-space (..) to hide it, making it appear just like
the . and .. directories. Let's look at what happens when an attacker names
a file period-space:

$ mkdir ". "

\ Make a directory with the name

period-space.

£ 1s -a
. .mystuff ftp httpd nctest test tools

\ This is a file or directory where the attacker can hide items.

Most administrators looking at the output of this 1s command would not see

the name period-space in the output, effectively hiding the directory from
view. The hidden directory is camouflaged and blends in with what an
administrator would expect to see in the directory. Some attackers use other
variants of this technique, naming a file or directory with just a space () or
with three dots (...).

Creating Hidden Files in Windows

Techniques for hiding files are not limited to UNIX. Modern Windows systems
offer users the option of setting a file or directory with the attribute "hidden"
so that it will be omitted from view by default. By simply right-clicking on
the file or directory in Windows Explorer and selecting Properties, the user is
presented with an option to make the file hidden, as shown in Figure 11.3.

Figure 11.3. Setting the "hidden" attribute on a file or directory.

stuff.txt Properties ilﬂ

General |

%‘ I skuff, bxk

Type of file: Text Document

Qpens with: .@ Motepad Change... |
Location: C:ADocuments and Setkingsiefs
Size: 20 bytes (20 bykes)
Size ondisk: 16,0 KB (16,384 bytes)

Check this
Created: Today, July 22, 2005, 9:09:12 AM F box, and ,lhe

1 selected file

Modified: Taday, July 22, 2005, 9:09:32 AM is hidden.
Accessed: Today, July 22, 2005

attributes: [T Read-only dden V¥ archive

Ok, I Zancel | Al |

However, discovering files with the "hidden" attribute is actually quite easy.
In Windows 2000 and XP, using the Folder Options panel in Windows
Explorer, you can select the View tab and select Show All Files. The screen
to configure this setting is shown in Figure 11.4.

Figure 11.4. Showing hidden files in Windows 2000/ XP.

Folder Dptions _.:.::EE cd bd

General Wiew |File Typesz | Offline Filez

— Folder views

Y'ou can et all of vour folders to the zame view.

i)
d

Ikl

i Like Current Folder ¢ Rezet All Folders

Advanced settings:

IZ3] Files and Folders =
O Display compreszed files and folders with alternate colar

[Display the full path in the address bar

Cllc.kmg I‘.hls O Display the full path in title bar

option will (B3 Hidden files and folders

ShDW 'fl]E"i {3 Do not show hidden files and folders

With the ——==——30.5) Shaw hidden files and folders

hldl‘.;j"i"ﬁ [Hide file extensions far known file types

attribute, [Hide protected operating system files [Recammended)

O Launch falder windaws in a separate process
Remember each folder's view settings
Show My Documents on the Desktop LI

Resztore Defaults |

(] Cancel | Spply |

A far more powerful and subtle technique for hiding information in Windows
involves using Alternate Data Streams (ADS), which relies on options
included with the NTFS file system. The basic capabilities of NTFS are
described in Chapter 4, Windows NT/2000/XP/2003 Overview. Beyond these
basic capabilities, NTFS allows every file or directory to have multiple
"streams" of data associated with it. These streams can store any type of
information. In fact, the normal contents of a file that can be seen and
accessed normally by users on the system is a stream itself. However,
behind this normal stream, data can be stored in an arbitrary number of
additional streams. Let's consider an example in which an attacker wants to
hide data in a stream associated with the file notepad.exe. Of course, the

attacker could hide data behind any file or directory on the system, but
suppose they have chosen notepad.exe. The normal stream associated

with notepad. exe contains the executable program for the simple
Windows editor Notepad.

You might think that special programs are required to create and access ADS
data, but our attacker can actually create another stream behind
notepad.exe using only the built-in Windows commands coupled with

input/output redirection. For our example, the attacker wants to take the file
stuff.txt and hide it in a stream behind notepad.exe. The attacker

could use this command:

C:\>type stuff.txt > notepad.exe:data.txt

This command copies the contents of the stuff. txt file into a stream
named data.txt behind the file notepad.exe. The colon followed by a

stream name indicates in which stream to put the data. The attacker could
give the stream any name at all and create any number of streams for each
file, as long as the partition on which notepad.exe resides is NTFS. If it is

a FAT or FAT32 file system, streams are not supported, so an error message
is displayed. But for NTFS-based file systems, the most common in use today
for Windows systems, the new stream named data. txt is automatically

created by this command and tacked onto the end of the notepad. exe file.
After deleting the file stuff.txt, no remnants of the file stuff.txt will
be visible in the directory. All of the contents of stuff.txt are hidden

behind the Notepad executable. That's the beauty of ADS from an attacker's
perspective: There is nothing built into Windows to locate these streams.
Windows Explorer doesn't show them, nor does the dir command. They are,

in fact, invisible on a stock Windows system. These streams act rather like a
subterranean world burrowed under your file system. Remember, any file or
directory can have an arbitrary number of streams underneath it.

Now, if anyone runs the notepad.exe program with our stream attached

to it, only the normal executable will run, with no indication of the hidden
file stream. When anyone on the system looks at the file size of
notepad.exe, the size of the normal, executable program will be
displayed, with no indication of the hidden stream of data. This stream is
quite effectively hidden. At a later time, the attacker can come back to the
system and retrieve the hidden data from the stream by using only built-in
Windows commands again, as follows:

C:\>more < notepad.exe:data > stuff.txt

Now the stuff.txt file has been restored, and the attacker can access its
contents.

It is important to note that the types of streams are independent of the
parent file under which they are attached. For example, a . txt file can be

embedded in a stream under an .exe file, or vice versa. You could store an
.exe under a . txt file, and then even run the .exe from within the
stream! Suppose we have created a stream called evil.exe underneath
the file good. txt. We could create this situation with this simple
command:

C:\>type evil.exe > good.txt:evil.exe

Now, we can run the executable from within the ADS by typing:

C:\>start .\good.exe:evil.exe

The evil executable runs just as if it were its own file, separated from the
ADS itself.

Defenses from Hidden Files

To defend against these techniques for hiding files on sensitive systems, you
should use file integrity checking tools that look at the contents of files and
directories to make sure no additional data, files, or directories have been
hidden in them. A file system integrity checker like Tripwire has this
capability, as do numerous others that we discussed in Chapter 10 during
our examination of rootkits. Additionally, host-based IDSs, which are
described in more detail in Chapter 6, Phase 2: Scanning, as well as
antivirus tools, can check the contents of directories to determine if a
malicious hidden file is present and generate an alert message for a system
or security administrator. If you use Windows, it is important to verify that
the virus and spyware scanning tools you employ are ADS aware, because
this method of hiding files and directories represents a huge untapped
resource for malware authors. At the time of writing, there are few if any
malicious programs that actually use ADSs, but look for that to change in
the future. Additionally, there are specialized tools that will scan the entire
file system looking for data stored in alternate streams. One such program is
CrucialADS, a free ADS scanning program that can be found at Another is
the free LADS tool (which stands for List Alternate Data Streams) by Frank
Heyne at . It is important to remember that all ADS data isn't bad (notably,
many graphic packages store metadata information about photos in an ADS)
but you should carefully check any ADS data that a scanner uncovers to
determine its origin, especially executables tucked in streams.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses

By Ed Skoudis, Tom Liston
Coun e Hc USSRV URUR USRI
= Publisher: Prentice Hall A A A
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Hiding Evidence on the Network: Covert
Channels

Once attackers have installed backdoor listeners on a system and cleaned up
their tracks in the logs, they still need to communicate with their nefarious
programs on the victim machine to control them. To avoid detection, some
attackers utilize stealth mechanisms to communicate with the backdoor
system across the network. Such disguised communication mechanisms are
referred to as covert channels. Covert channels are essentially an exercise
in hiding data while it moves. Whereas encryption mathematically
transforms data into ciphertext so an adversary cannot understand its
contents, covert channels hide the data so the adversary doesn't detect it in
the first place. A truly paranoid attacker will use both a covert channel to
hide information and cryptography to scramble the contents of the
information as well.

The techniques we discuss for establishing covert channels across the
network require both a client and a server. The server must be installed on a
victim's system, acting as a sentinel, ready to exchange data with the client.
The client packages up data using stealth techniques, and the server

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

unpackages the data and reacts to it. The covert channel can be used to
control a system remotely, to transmit files secretly, or to hide any other
application capability the attacker needs to disguise. Figure 11.5 depicts a
typical generic exchange of data using a covert channel between a client and
a server.

Figure 11.5. A covert channel between a client and a server.

c—a =

=4
COVERT CHANNEL COVERT CHANNEL
CLIENT SERVER

“Hidden” Data

How does the covert channel server acting as an endpoint for the covert
channel get installed on a victim's machine in the first place? We have seen
attackers employ countless techniques in real-world cases, including these
scenarios:

« An attacker can take over a system and place a backdoor listener on it
through a vulnerability such as a buffer overflow.

« The attacker could e-mail an unsuspecting internal user an executable
Trojan horse program, worm, or virus, which implements a covert
channel server.

« The attacker might be an ex-employee who had system administration
privileges before being terminated. The attacker could leave the covert
channel server as a way to keep unauthorized, lingering access.

« The attacker might have been a temp or contractor who signed on for a
brief stint with the organization for the sole purpose of installing a
backdoor agent on the internal network (and heck, to make a couple of
bucks while on the victim's payroll).

« The attacker could have physically broken into a computing facility late
at night, and installed an agent on a system. In some environments,
nighttime is not even a necessary ingredient. By simply walking in the

front door and acting confident enough, an attacker can pretend to be a
vendor or use some other ruse to gain access to computing systems to
install internal covert channel servers.

Any of these mechanisms can be used to gain access. Once access is
obtained, the covert channel allows the attacker to work in stealth mode
remotely.

Tunneling

Covert channels often rely on a technique called tunneling, which allows one
protocol to be carried over another protocol. Any communications protocol
can be used to transmit another protocol. Information theory says it must be
so. Consider a hypothetical protocol called TCP/CP. TCP/CP marries a
modern-day computer protocol to an ancient mechanism for delivering
messages, resulting in a slow, yet remarkably effective communication tool
for intermediate distances.

In a real-world example of tunneling techniques, the SSH protocol can be
used legitimately to carry other TCP-based services. Originally, SSH focused
on providing strongly authenticated, encrypted command shell access across
a network, still probably its most popular use today. However, through
tunneling, its use has been greatly expanded. With a rock-solid SSH session
in place, any other TCP services, such as telnet, FTP, or even an X-Window
session, can be transmitted securely over SSH. The information comprising
the telnet, FTP, X, or other session is simply written into SSH messages and
transmitted across the authenticated, encrypted SSH pipe. This SSH
tunneling technique is frequently used to create VPN-like access across
untrusted networks for TCP services. Although SSH tunneling only works
with TCP connections, there are other tunneling protocols that are designed
to handle UDP traffic. But, if you're ever in a jam, remember that our old
friend Netcat (see the section titled "Netcat: A General-Purpose Network
Tool" in Chapter 8) can be used to create a UDP listener to grab traffic,
which can be piped into a Netcat client creating a TCP stream, allowing you
to pass it through an SSH tunnel.

What Is TCP/CP?

The Transmission Control Protocol (TCP), transmitted via Carrier
Pigeon (CP), of course. The higher layer application (which could be
Web browsing, telnet, FTP, SSH, or any other TCP-based
application) passes data down its protocol stack. The TCP layer
formats the packet, and instead of sending it to the IP layer, it
prints each TCP packet on a tiny sheet of paper. Each packet is then
wrapped around the leg of a carrier pigeon. The pigeon is released,
carrying the printed sheet to its destination. At the destination, the
data is retyped into a computer, passed up through the TCP layer,
and sent to the receiving application. Pigeons are then fitted with
responses, and interactive communication occurs. Although not
terribly efficient (downloading the latest MP3, in addition to
outraging the recording industry, has the unwanted side effect of
exhausting fleets of pigeons), TCP/CP shows how any protocol, no
matter how bizarre or awkward, can be used to carry another
protocol through tunneling. Another bird-related transport protocol
was defined by the IETF in RFCs 1149 and 2549. Check out for
more information about how to transmit IP over avian carriers.

An SSH tunnel and protocol tunneling in general are powerful methods to
allow confidential traffic to flow through an untrusted network, but like most
good things, they can be abused as well. Attackers have harnessed the
power of these tunneling techniques to remain undetected as they
communicate with their backdoor listeners. Several tools are widely
exchanged within the computer underground based on these techniques.
We'll look at a few of the most widely used tools for tunneling covert
information: Loki and Reverse WWW Shell.

Loki: Covert Channels Using ICMP

Many networks allow incoming ICMP packets so users can ping or traceroute
to their Web sites for troubleshooting. Suppose an attacker takes over such
a Web server, installs a backdoor listener, and wants to communicate with it.
Sure, the bad guy could set up a backdoor listener on a specific port, but
that might be detected. A more stealthy approach would be to utilize ICMP
as a tunnel to carry on interactive communications with the backdoor
listener. Tunneling the communication over ICMP has several advantages,
including the fact that ICMP messages don't require an open port that might
be detected by a curious system admin using the netstat or 1sof

commands we discussed in Chapter 6. Numerous tools have been released
that utilize tunnels over ICMP to establish a covert channel, and one of the

most popular is Loki, pronounced "Low-Key."

Loki was written by daemon9 to provide shell access over ICMP, making it
much more difficult to detect than other (TCP- or UDP-based) backdoors.
Loki was originally described in Phrack issue 49, with source code available
in Phrack 51 (both at). The tool runs on Linux, FreeBSD, OpenBSD, and
Solaris systems and although there are rumors that it has been ported to
Windows, if it has, it certainly isn't in widespread distribution. As shown in
Figure 11.6, the attacker types in commands at a prompt into the Loki
client. The Loki client wraps up these commands in ICMP and transmits them
to the Loki server (known as "lokid" and pronounced "Low-Key-Dee"). Lokid
unwraps the commands, executes them, and wraps the responses up in ICMP
packets. All traffic is carried in the ICMP payload field. The Lokid responses
are transmitted back to the client, again using ICMP. Lokid executes the
commands as root, and must be run with root privileges, so it can snag the
ICMP packets from the kernel and extract the commands.

Figure 11.6. Loki hides data inside ICMP messages.

=

LOKI LOKID
CLIENT INSTALLED ON

VICTIM

ICMP.. . looks like "ping”
and "ping response”

As far as the network is concerned, a series of ICMP packets are shot back
and forth: Ping, Ping-Response, Ping, Ping-Response. As far as the attacker
is concerned, commands can be typed into the Loki client that are executed
on the server machine, yielding a very effective covert communication
session.

System administrators often use the familiar netstat —-na command to

show which processes are listening on which TCP and UDP ports. In addition
to running netstat, system administrators can periodically port scan their

systems to detect backdoor listeners using a tool like Nmap, as described in
Chapter 6. However, as stated earlier, ICMP does not include the concept of

a port, and is therefore not detected using netstat and will not show up in

a port scan. Loki therefore foils these two detection techniques, flying under
the radar screens of the common system administrator backdoor detection
techniques. The only trace of the Loki daemon on the internal system is a
root-level process running, and ICMP packets going back and forth.

Loki also has an option to run over UDP port 53, thereby disquising its
packets as DNS queries and responses. These packets are not properly
formatted DNS queries and responses, however. Instead, Loki just uses the
same port as DNS traffic. Loki supports on-the-fly protocol switching to
toggle between ICMP and UDP port 53. When in UDP mode, Loki will show up
in the output of the netstat —-na command, and can be identified during a

port scan. Additionally, to further stealthify the connection, Loki supports
end-to-end encryption of the ICMP payload information using the Blowfish
algorithm for encryption and Diffie-Hellman for key exchange.

This technique of transporting covert communication via ICMP is by no
means limited to Loki. There are several other tools that can be used to
tunnel communications over various protocols. The Covert Channel
Tunneling Tool (CCTT) can tunnel communication using ICMP, TCP, and UDP
packets. MSNShell is a tool that tunnels shell commands to and from a Linux
machine using Microsoft's MSN protocol. Both tools are projects of Gray
World Net Team and available from These tools and others like them are
currently used by the underground to provide covert communication with
backdoors installed on compromised systems.

Reverse WWW Shell: Covert Channels Using HTTP

"Loki is interesting," you might say, but you are far too smart to allow
incoming or outgoing ICMP on your network. Sure, blocking pings is an
inconvenience for users, but security is paramount, for goodness sakes. So,
because ICMP is blocked at your border, you're secure against covert
channels, right?

Well, unfortunately, Loki and ICMP tunneling are but a small area in an
enormous universe of covert channel choices for an attacker. Another
particularly insidious technique is to carry shell-type commands using HTTP,
which has been implemented in the aptly named Reverse WWW Shell tool.

Reverse WWW Shell allows an attacker to access a machine with a command
shell on your internal network from the outside, even if it is protected with a
firewall. It was written by van Hauser (who also wrote THC-Scan, the war
dialer described in Chapter 6—clearly a talented individual) and is available
at The attacker must install (or get one of your users to install) a simple
program on a machine in your network, the Reverse WWW Shell server.

On a regular basis, usually every 60 seconds, the internal server tries to
access the external master system to pick up commands, essentially calling
home. If the attacker has typed something into the master on the external
system, this command is retrieved and executed on the internal system. The
next communication from the internal agent will carry the results of this
command, and a request for the next command. This is the "reverse" part of
Reverse WWW Shell: The server goes to the master to pull commands,
executes them, and pushes the results. This polling technique is called a
reverse shell, or, more colorfully, shoveling shell, as we discussed in the
context of Netcat in Chapter 8, Phase 3: Gaining Access Using Network
Attacks. Figure 11.7 shows the operation of Reverse WWW Shell in more
detail. Therefore, we have simply pushed out shell access, an impressive
feat, but by no means revolutionary, right?

Figure 11.7. Reverse WWW Shell looks like outgoing Web access, but
is really incoming shell access.

[View full size image]

Bad guy installs
Reverse WAL Shell

INTERNAL
NETWORK

Execute the
cormmare

Command lire interface hered
< safe_host =

But wait ... there's more! From a network perspective, the internal (victim)
machine appears to be surfing the Web. The Reverse WWW Shell server
uses standard HTTP GET messages sent to the attacker's external system
across the network, where the Reverse WWW Shell master is running. When
it accesses the master, the Reverse WWW Shell server pushes out the
command-line prompt from the server, tunneled in HTTP requests and
responses. So, the internal agent looks like a browser surfing the Web. The
external master looks like a Web server. All outgoing data is transmitted
from a high source port (greater than 1024), to a destination TCP port of 80.
All responses come back from TCP port 80 to the high-numbered port.

So the packets have HTTP characteristics, but, even worse, the shell data is
formatted as HTTP GET commands. Therefore, even a proxy firewall that
enforces the use of HTTP on TCP port 80, carefully combing the protocol to
make sure it's HTTP, is befuddled. The firewall and other network
components view the traffic as standard outgoing HTTP, something that most
networks allow. In fact, the covert channel is incoming shell access, allowing

the attacker to execute any command on the internal system.

From the attacker's point of view, using Reverse WWW Shell is rather
annoying; the cadence of entering in commands, waiting for the server to
come and retrieve them, execute them, and send the response can be
cumbersome and frustrating. The attacker types in a command, waits 60
seconds, and then gets the response. The attacker can then type another
command, wait 60 more seconds, and get the response. Although annoying,
the tool is still incredibly useful for an attacker, and the 60 seconds can be
set to a lower value. Making it too low, however, would not look as much
like normal HTTP traffic. If you saw a browser going to the same Web server
every three seconds, you might be suspicious. Of course, to make Reverse
WWW Shell even stealthier, the attacker can randomize this period between
accesses.

Unfortunately, you are still not safe if you require HTTP authentication with
static passwords to get out of your firewall. Many organizations only allow
outgoing Web browsing if a user authenticates to a Web proxy with a user ID
and password, a reasonable increase in security and auditability under most
circumstances. However, Reverse WWW Shell allows the attacker to program
the system with a user ID and password that will be given to the outgoing
Web proxy firewall for authentication.

From an implementation perspective, the Reverse WWW Shell client and
server are the same program, with different command-line parameters. The
single client/server program is written in Perl, so a Perl interpreter is
required on both the inside and outside machines. Additionally, several folks
have developed similar functionality for tools that use HTTPS.

Unfortunately, the ideas behind Reverse WWW Shell didn't stay confined to
the computer underground. Currently, there are some commercial services
that implement remote GUI access to the desktop via HTTP, with one of the
most popular named GoToMyPC.com. It's very scary from a security
perspective, letting your users (and evil attackers) anywhere on the Internet
control machines remotely via outgoing HTTP that is secured only by a user-
chosen password. If users choose weak passwords, an attacker might be able
to take over their internal systems by riding across the outbound HTTP
access of GoToMyPC. This security administrator's nightmare even offers a
free trial period, and claims it takes only two minutes to install. And people
wonder why some security folks have thinning hair!

Other protocols besides ICMP and HTTP are being used to tunnel covert data.
Attackers have created tools that utilize SMTP, the protocol used to
transport e-mail across the Internet, to carry shell access and transfer files.
Of course, the latency of using a store-and-forward application like e-mail
for transmitting commands and results is even more painfully slow than

	Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and Effective Defenses
	Chapter 11. Phase 5: Covering Tracks and Hiding
	Hiding Evidence by Altering Event Logs
	Defenses Against Log and Accounting File Attacks
	Creating Difficult-to-Find Files and Directories
	Hiding Evidence on the Network: Covert Channels

